HomeDiagramsDatabaseMapsForum About

Go Back   SkyscraperPage Forum > Discussion Forums > Engineering


Thread Tools Display Modes
Old Posted Apr 29, 2021, 3:05 PM
seismic's Avatar
seismic seismic is offline
Registered User
Join Date: Feb 2010
Posts: 116
Research. New knowledge in seismic technology.

The design mechanisms and methods of the invention are intended to minimize problems related to the safety of structures in the event of natural phenomena such as earthquakes, tornadoes, and strong winds.

It is achieved by controlling the deformations of the structure.
Damage and deformation are closely related concepts since the control of deformations also controls the damage.
The invention controls deformations even if the earthquake has a long duration and intensity.
Adjusts the displacement at the limits of the elastic displacement region, preventing inelastic displacement.
According to the invention, this is achieved by a continuous pre-tensioning between the upper ends of the side walls and the foundation ground by joining the two parts into one body, like a sandwich.
Prestressing intensities are applied by anchoring and pulling mechanisms.
They consist of pre-tensioning tendons, which penetrate freely, the sides of the walls (with the help of pipes) as well as the length of drillings under them.
The lower ends of the tendons are anchored to the depths of the boreholes with mechanisms such as expanding anchors.
The upper end of the tendons is placed on the sides of the upper level of the walls, and is pre-stressed with hydraulic mechanisms, which impose compressive loads on the cross sections of the walls.

The traction of the tendons by the hydraulic mechanisms located at the upper ends of the sides of the walls, as well as the reaction to this traction coming from the lower anchored ends of the tendons at the depths of the drillings, create the connection of the walls with the ground.

1) The columns have great elasticity when the bending moment acts on them.
They usually bend and are unable to receive dynamic lateral seismic loads.
In a combination of walls and columns all lateral dynamic loads are received from the walls, because the columns are elastic and recede.
That is why the walls are the first to fail, and they do not fail because they do not have elasticity, but because they take on all the loads.
The columns receive only the static loads of the building.

2) The walls initially show little elasticity when the bending moment acts on them, and then they resist dynamically to the lateral seismic intensities.

3) Elongated large walls are considered to have a diaphragm function, that is, they are almost rigid.

4) Structures that consist entirely of reinforced concrete, are considered completely rigid structures with almost zero period.
The bending moment should theoretically be reported for columns and walls. In completely rigid constructions with diaphragm function for me the bending moment is wrong and I replace it with tipping torque
To avoid deformation which causes failures, I try to use large elongated walls in the design of the structures as well as completely rigid structures with a diaphragm function that have the perfect rigidity.

There is no failure without deformation so rigid structures should be the strongest structures in the earthquake, since they have great strength towards the earthquake. But this practically does not happen. Rigid structures are the first to fail in an earthquake.
Why is this happening?
We will look at these reasons below.
A rigid and high-rise building in a strong earthquake is more easily overturned than a building of the same size that rests only on elastic pillars.
Why is this happening?
The columns store seismic energy and release it in the opposite direction in each new seismic charge cycle, as does the spring. Rigid columns are overturned when the tipping torque is greater than the stability torque.
The dynamics of the walls are canceled due to overturning and the intensity is transferred to the horizontal load-bearing elements and the dynamics are taken over by their small cross sections.
That is, from the point of stability, when the wall passes to the point of tipping and then, the transfer of forces is diverted to all horizontal elements, with which the wall joins at the nodes.
When they begin to receive seismic loads, the horizontal elements react with torques in the opposite direction.
First they receive the stresses by reacting with elasticity, then with leaks until they exceed the breaking point and the construction collapses.
Here are the following remarks.

a) When the walls lose their eccentricity, they deflect the forces in the small cross sections of the horizontal elements and break them.
b) The dynamics of the wall trunks are great, but the dynamics that they could offer is canceled because they are easily overturned and beyond that the dynamics depend on the dynamics of the of the horizontal elements.
c) If we increase the cross sections of the horizontal elements to increase their dynamics, the inertia of the structure and the intensities of the earthquake also increase. This is a problem If we want to defeat the earthquake we must increase the dynamics of construction and reduce seismic loads.

We reduce the seismic loads with horizontal seismic insulation, and with the reduction of mass and height.
We reduce the mass by using light materials in the masonry such as the alpha block.
There is a problem for the increase of the dynamics, because by increasing the mass of the cross section that would give us additional dynamics, the seismic lateral forces also increase.
Solution to the problem.
If we can not increase the dynamics by increasing the mass, we can increase the necessary dynamics by drawing it from an external factor, that of the ground and transfer it to the construction with tendons and mechanisms of traction and anchoring.
This external force has no mass and does not create additional tensions of inertia.
It is transported on the construction for six reasons.
a) To help as an external force (without mass) the dynamic response of the structure, controlling the seismic displacements.
b) To deflect seismic forces outside the structure and send them into the ground, before they are directed to the weak small cross sections of the horizontal elements and break them.
c) To increase the dynamics of the walls to
1) the stability forces,
2) the bending moment forces
3) the shear base forces and the shear failure.

d) To increase the bearing capacity of the soil where needed.
e) To control the coordination of construction and ground.
f) To ensure the control of the displacements of the floors, so that they always remain inside the elastic displacement area in which no failures are observed, as well as to ensure the smooth oscillation of the structure preventing the creation of phase difference .
It is the big factor that determines the design method of a construction.
As I said before, the method I propose is effective in rigid dynamic constructions (due to rigidity and because if we join all the sides of the wall with the ground, they also get a double lever which reduces the stresses), but they are expensive because they have a lot of concrete. Prefabricated houses, which are completely rigid and industrialized, have managed to reduce costs by half the cost of conventional constructions with pillars.

If the prefabricated houses put my patent, they will become seismically shielded and will be able to develop an unlimited number of floors in height.
Imagine if they became prefabricated skyscrapers, how much their cost would fall and how much their earthquake protection would increase.
And why can't we build high-rise prefabricated buildings in seismic areas?
And why does the height of the prefabricated buildings not exceed two floors in seismic areas?

Answer 1) Tall rigid buildings such as prefabricated buildings are easily overturned.
2) They do not have beams to bend them, and what happens in combination with their dynamics is the following.
During the displacement, with great rigidity, (instead of bending the beams) there is a tendency of overturning which causes the rotation of the base foot, in the whole area of the construction.
At this stage two things can happen.
1) The overturning of the structure if it is high
2) With the partial overturning of the structure, most of the base loses its support from the ground.
The result is, 1) the overturning moment of the building, in contrast to the other opposite direction of torque, which is created by the vertical static loads, unsupported by the ground, create a huge shear failure that destroys the weakest sections, those above the nodes, of the window doors.
The method I propose stops the overturning of rigid buildings and the construction does not lose the support of the ground because it makes it one with the ground like a sandwich!
Experiment 2.41 g natural earthquake, with the method I suggest https://www.youtube.com/watch?v=RoM5pEy7n9Q&t=27s Experiment Without the new method https://www.youtube.com/watch?v=l-X4tF9C7SE&t=9s

Research. New knowledge in seismic technology.

1) I introduce a new external force without mass, coming from the ground, onto the structure, to help the structure to respond to the earthquake and to receive and deflect seismic loads, outside the structure, into the ground, thus controlling the displacements of the structure which deform it above the breaking point and knock it down.

2) I built a mechanism which is the first mechanism in the world that has the ability from the foundation surface with the help of hydraulic jacks to exert horizontal pressure on the ground towards the slopes of a borehole, along its entire height, and at the same time to exert vertical pressures on the ground surface, before the construction of the project.

The result of this technique is to compact the ground from the foundation surface and in all directions, in order to stabilize on the one hand and to obtain a strong anchorage of the mechanism, twice the design intensities. Filling the borehole (after condensing) with concrete offers a deep foundation higher than the width they make today, because it has the ability to receive greater intensities of compression and traction.

3) I am the first to insert the double pre-tension using the same pre-tension tendon. I apply the first pre-tension between the ground surface and the anchoring mechanism, and the second pre-tension between the nodes of the top level and the anchor that preceded the ground. The result is that the construction joins the ground like a sandwich.
This mechanism does not differ from the prestressed cantilevers of the bridges which rest on pedestals.

Last edited by seismic; Apr 29, 2021 at 3:19 PM.
Reply With Quote
Old Posted May 7, 2021, 8:54 PM
seismic's Avatar
seismic seismic is offline
Registered User
Join Date: Feb 2010
Posts: 116
My method or existing seismic technology is the best;

Brief Description of the Invention The principal object of the hydraulic tie rod for construction projects of the present invention as well as of the method for constructing building structures utilizing the hydraulic tie rod of the present invention is to minimize the aforesaid problems associated with the safety of construction structures in the event of natural phenomena such as earthquakes, hurricanes and very high lateral winds. According to the present invention, this can be achieved by a continuous pre-stressing (pulling) of both the building structure towards the ground and of the ground towards the structure, making these two parts one body like a sandwich. Said pre-stressing is applied by means of the mechanism of the hydraulic tie rod for construction projects. Said mechanism comprises a steel cable crossing freely in the centre the structure’s vertical support elements and also the length of a drilling beneath them. Said steel cable’s lower end is tied to an anchor-type mechanism that is embedded into the walls of the drilling to prevent it from being uplifted. Said steel cable’s top end is tied to a hydraulic pulling mechanism, exerting a continuous uplifting force.
The pulling force applied to the steel cable by means of the hydraulic mechanism and the reaction to such pulling from the fixed anchor at the other end of it generate the desired compression in the construction project.
The Patent Idea
We have placed on a table two columns, one column screwed on the table, and the other simply put on the table. If one shifts on the table, the unbolted column will be overthrown. The bolted column withstands the lateral loading. We do exactly the same in every column of a building to withstand more lateral earthquake loading. That is done, by simply screwing it to the ground. This pretension between the roof of the structure and the soil has been globally disclosed for the first time.
The invention stops the bending of the bearing vertical concrete elements by imposing compressive stresses on the cross sections. as well as the tipping moment, through the anchoring mechanism which anchors strongly under the foundation ground. It also creates an improvement in the bearing capacity of the soil in both compression and traction. Prefabricated structures made of reinforced concrete are the ideal constructions in which the invention has high efficiency and utility for the following reasons.
1) Prefabricated reinforced concrete structures are rigid and the imposition of compressive stresses on the cross section makes them even more rigid and improves the shear of the base. 2) The mathematical formula to find the moment of inversion is (force X height and the product is divided by the width of the wall) If we have a prefabricated two-storey reinforced concrete structure 7 meters high and with a frame width of 4x4 meters, which accepts a lateral force of 80 tons, the tipping moment will be (7X80 / 4 =) 140 tons If we place 2 tendons on each side of the prefabricated house, then each one must create a moment of stability> 70 tons.
If the same construction was based on 4 columns of dimensions 0.40X0.40X 7.00 meters then the moment of stability of the tendons would be much greater. (7Χ80 =) 560 tons 560/2 = 280 tons. So there is a big difference in dynamics, between the choice of columns and walls, and the stress of the tendons to the tensile stresses, and the anchors to the ground adhesion and the cross sections to the compression. So the choice of prefabricated is better.
3) Prefabricated houses are also industrialized and cost half the money that another construction costs.
These three main reasons are where they make the patent on prefabricated houses profitable. Both cheap and anti-seismic.
I'm not an expert in existing technology, but I'm very much an expert in the technology I suggest.
Please correct me if I am wrong in the following that I will say ....
Elasticity stores seismic energy and returns it to each seismic load cycle.
No failures are observed in this area of ​​elastic displacement However, seismic damping is created in the elastic displacement region by the friction of the materials which produce heat.
That is, they convert kinetic energy into thermal energy.
Prefabricated houses are completely rigid with almost zero period, and have zero seismic damping.
This is not good for prefabricated houses because seismic damping only does good.
When the ground acceleration is large the elastic construction creates large curves in the trunk of the beam and the pillar, and the elasticity begins to be lost and many small cracks are created at the ends of the beams.
These small cracks are the so-called plastic failure areas or so-called plasticity.
The mechanism of plasticity releases seismic energy, and this is good for construction.
This excess displacement outside the elastic region is the inelastic displacement region in which the plasticity mechanism occurs, but the structure does not return to its original position as it returns to the elastic displacement region.
If the earthquake is too big and the displacements will be too big and the curves in the trunk of the beam and the pillar will be too big and will create big cracks above the breaking point, and if there are many the construction will collapse.
Here's the weak point of the existing design.
In large earthquakes the existing design fails to control the inelastic displacement and the structures collapse.
If you increase the cross sections of the elements, the elasticity is lost, the seismic intensities increase as the mass increases, and the walls drop high torques at the base, due to the lack of elasticity.
Plasticity is also lost.
These stiffening factors create a large tipping moment in prefabricated houses, which creates a recoil in the total base area of ​​the house.
The building loses ground support.
As a result, a large torque, in the opposite direction of the overturning torque is created, which is responsible for the failures of prefabricated houses.
What the mechanism of the invention does is to create a moment of stability to balance the overturning moment, so that the construction does not lose ground support.
In high-rise prefabricated houses the problem grows.
With the patent we will build prefabricated skyscrapers, with lower cost and greater seismic response.
This stability force, the mechanism takes it from the ground, so it has no mass to increase the inertia intensities.
On the other hand, the mechanism deflects all the forces of the earthquake into the ground, preventing them from being directed to the cross sections of the beams.
Still The pre-tensioning in the cross-sections of the prefabricated houses increases their dynamics by eliminating the cutting of the base, and the shear failures.
Loose soils can be sandy or clay and there is definitely water in them.
In a medium-sized earthquake, these soils recede and the structures either tilt or collapse.
The mechanism of the invention is a tool which not only pre-compacts loose soils by exerting hydraulic pressures on the horizontal and vertical axis, (before construction) to increase their bearing capacity,
but strongly tightens the construction to the ground by assuming static loads and traction loads of the base.
Successfully dealing with both seismic waves (P) and catastrophic waves (S) without losing traction with the ground.
Reply With Quote
Old Posted May 12, 2021, 5:34 PM
seismic's Avatar
seismic seismic is offline
Registered User
Join Date: Feb 2010
Posts: 116
According to drawings (A1) (B1) are given, in a table, the axial loads N of the vertical tendons of the patent ( https://www.scirp.org/html/6-1880388_59888.htm ) for the following case of an ideal residential building, to deal with a very strong earthquake:

TABLE A Floor plan of the building 10.00m × 10.00m, square with nine (9) columns with grid 5.m

TABLE B Floor plan of a building 20.00m × 20.00m, square with 24 columns with grid 5.m

A.1 Ground floor height 3.50m
Α.2 Two-storey, total height 7.00m
A.3 Three-storey, total height 10.50m
A.4 Four floors, total height 14.00m
A.5 Five-storey, total height 17.50m
A.6 Six floors, total height 21.00m

Depending on the quality of the steel to be used, is also the cross section of the tendon.
The forces and cross-sections correspond to the leakage state of the steel (without any safety factor).
The tables and drawings in the attachment in the link
Reply With Quote
Old Posted May 25, 2021, 7:51 PM
seismic's Avatar
seismic seismic is offline
Registered User
Join Date: Feb 2010
Posts: 116
Why do we need plasticity if we can control deformation?

The columns are elastic with low dynamics. The walls, the wells, are rigid with great dynamics. The columns when rocking in the elastic displacement area consume seismic energy because through friction they convert the seismic kinetic energy into thermal energy. When the earthquake is large and they undergo inelastic displacement, they create cracks in the beams, releasing the seismic energy (plasticity) But the truth is that they offer almost no dynamic reaction because they recede due to elasticity and allow the rigid walls to absorb all the force of the earthquake. For this reason the columns in static calculations are used to receive only static loads while the walls to receive both static and dynamic seismic loads. For this reason the walls fail first in the earthquake. That which is elastic bends (columns) and that which is rigid (walls) is overturned. If we create anchoring of the wall with the foundation ground + apply compressive forces to its cross section then neither it will bend nor it will be overturned. The shear force of base will pick up the wall without any problem. This was shown by the simulation and the experiments I did .. The shear failure as well as the critical failure area will disappear along with the bend. Deformation along with failures will be eliminated. Why do we need plasticity if we can control deformation? Pre-tension walls are considered elastic in high-rise structures. The walls simply show smaller cracks due to prestressing.

Simulation and numerical investigation of seismic system behavior
Reply With Quote

Go Back   SkyscraperPage Forum > Discussion Forums > Engineering
Forum Jump

Thread Tools
Display Modes

Forum Jump

All times are GMT. The time now is 11:34 AM.


Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2021, vBulletin Solutions, Inc.